Fast Lead Times // Quick transit
Demand for fiber optic networks is growing to support increased network speeds and high- volume data transfers. Fiber optic patch cables support these demands by providing reliable high- speed connections. The fiber optic patch cable consists of cabling and connectors that connect to optical equipment supporting high-speed networks. Fiber optic patch cables are found almost everywhere; cable television networks (CATV), data centers, computer networks, and telephone networks. Fiber optic patch cables are put together by selecting and assembling the fiber types, cable styles, standard or special type fiber patch cord, connector style and types, polishing type, and jacket type.
Singlemode fiber optic patch cables support high-speed networks up to 50 times farther than multimode fiber optic cables. In addition, the narrower 9-micron core provides faster transmission speeds and long-distance communication ranges.
A simplex fiber optic cable has a single strand of glass or plastic fiber as its core and one single connector on each end. Simplex fiber provides only one-way data transfer, so it works well for a network that moves data in a single direction. In addition, Simplex fiber optic cabling is excellent for long-distance communication because it carries a single light ray at a time.
Patch cables have a limit on how much bend is allowed before the fiber inside breaks. The amount a patch cable can bend before being damaged is called the bend radius. Bend insensitive patch cables can bend beyond conventional cable specifications without causing the fiber stress damage that allows light to leak out. Bend insensitive cables are typically applied to applications including distribution racks and in buildings where the cable is required to bend around wall corners and other fixtures.
A connector is located at each end of the fiber patch cable to provide a cabling attachment to the transmit and the receiving device. There are many types of connectors. The most common types of cable connectors are Lucent Connectors (LC), Subscriber Connectors (SC), and Straight Tip (ST). Connectors are designed for a specific application or to improve connection quality and installation density. Ease of connection, low cost of manufacture and operation, interchangeability, durability, and low coupling loss determine connector quality.
Standard fiber patch cords have the same connector type on both ends, such as LC to LC fiber patch cord and SC to SC fiber patch cord. Hybrid fiber patch cords have different connectors on each end, like LC to SC. If the port type of devices on both sides are the same, you can choose the same-connector type fiber patch cord. If the port type is not the same on both devices, choose a hybrid cable.
Fiber optic connectors are designed and polished into three shapes to minimize back reflection. The three fiber optic connector polish types are Physical Contact (PC), Ultra Physical Contact (UPC), and Angled Physical Contact (APC). PC connectors are black, APC connectors are green, and UPC connectors are blue to simplify identification. Always use the same polish types together, or the connection will have high insertion loss.
APC is better suited for high bandwidth applications and long-distance links, such as FTTx, passive optical network (PON), and wavelength division multiplex (WDM). On the other hand, UPC is better suited for optical systems that are less sensitive to insertion loss, such as digital TV and telephony.
The Physical Contact (PC) polish type has a cylindrical cone head with a return loss of about - 40dB. OM1 and OM2 multimode fiber use the PC polish type.